REGIOSELECTIVE OPENING OF 2, 3-EPOXY ALCOHOLS WITH ORGANOCUPRATES. ENHANCED C-2 SELECTIVITY THROUGH SOLVENT EFFECTS.

J. Michael Chong*, Douglas R. Cyr and Eduardo K. Mar. Guelph-Waterloo Centre for Graduate Work in Chemistry University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Summary: In coordinating solvents (THF-DMEU or THF-TMEDA), increased selectivity for opening at C-2 of 2,3-epoxy alcohols is observed with Me₂CuCNLi₂ prepared from lowhalide MeLi.

Since the discovery of the Sharpless epoxidation in 1980^1 which has allowed for the preparation of homochiral 2,3-epoxy alcohols, considerable attention has been directed at regioselective opening of these compounds with carbon nucleophiles.² A number of organometallic reagents, including organocuprates and organoaluminum complexes. have been used with varying degrees of regioselectivity.³⁻⁸ For example, opening of 2,3-epoxy alcohols with MegAl generally results in introduction of a methyl group to C-3 with good to excellent reqioselectivity.³⁻⁵ With 3-substituted-2,3-epoxy alcohols that are branched at C-4, opening with Me₂CuLi results in exclusive opening at C-2 (to form a 1,3-diol).^{6,7} However, with trans 2,3-epoxy alcohols⁹ that have a simple alkyl group (not branched at C-4) at C-3, opening with Me₂CuLi is essentially non-regioselective and 1:1 mixtures of 1,2 and 1,3-diols result. 2a , 10 Thus when the 1,3-diol (the product of opening at C-2) is the desired product in these cases, one strategy which has been employed recently is to treat the 1:1 mixture with periodate and then to separate the 1,3-diol from the resulting aldehyde. 11 , 12 This strategy has the obvious disadvantage that the yield of the desired product will not exceed 50%. We now report that the ratio of C-2:C-3 opening in these unbranched cases may be increased from 1:1 to > 5:1 simply by the appropriate choice of reagent and solvent.¹³

Initial studies were carried out using epoxy alcohol **1a** and the higher order cuprate $Me_2CuCNLi_2$ (4) which has been shown to be particularly efficient for epoxide openings.¹⁴ Results are summarized in Table I. As expected, reaction of **1a** with **4** under the conditions typically employed (Et₂0, -20°C) gave a mixture of **2a** and **3a** with essentially no selectivity (**2a:3a** = 53:47, entry 1). However, with better coordinating solvents, the ratio of **2a:3a** increased (entries 2-5). Best results were obtained using THF-TMEDA (N,N,N',N'-tetramethyl-ethylenediamine, **2a:3a** = 74:26, entry 3) and THF-DMEU (1,3-dimethyl-2-imidazolidinone, **2a:3a** = 84:16, entry 5) as solvent. Although the reaction using DMEU as cosolvent was quite slow (0°C, 18 h)¹⁵, no side-products were detected and the two regioisomers were isolated in excellent (>90%) yield.

nC ₁	₀н₂₁ ∽О́он —	$- nC_{10}H_{21} \xrightarrow{OH} OH + nC_{1}$			
	1 a	2 a		3a	
Entry	Reagent ^b	Solvent	<u>Conditions</u> C	<u>Ratio 2a:3a</u> d,e	
1	4	Et ₂ 0	А	53:47	
2	4	THF	A	67:33	
3	4	THF-TMEDA,4:1	В	74:26	
4	4	THF-DMEU, 9:1	С	70:30	
5	4	THF-DMEU,4:1	С	84:16	
6	4 •LiBr ^f	THF	В	49:51	
7	4 •LiBr ^f	THF-TMEDA,4:1	В	51:49	
8	4 •BF ₃ •OEt ₂ 9	THF	D	21:79	
9	5	Et 20	A	44:56	
10	5	THF-TMEDA,4:1	В	59:41	
11	5	THF-DMEU. 4:1	с	67:33	

Table I. Reaction of Epoxy Alcohol 1a with $Me_2CuCNLi_2$ (4) and Me_2CuLi (5). a

~...

. .

^aReactions were carried out on 0.5 mmol of substrate using 2.0 mmol of reagent in 10 mL of solvent under the conditions specified. ^bReagent **4** was prepared by addition of MeLi (low halide) to CuCN at -20°C; for **5**, CuBr·SMe₂ was employed as the copper source. ^cA: -20°C/2 h+0°C/1 h; B: -20°C/2 h+0°C/2 h; C: -20°C/2 h+0°C/18 h; D: -78°C/1 h+0°C/1 h. ^dRatios were determined by ¹H NMR spectroscopy (250 MHz) on the peracetylated (Ac $_{20}$, pyr, catalytic DMAP) reaction mixture in C₆D₆. ^eThe isolated yield of diols was 85-95% in each case. Only **2a** (R_f=0.36) and **3a** (R_f=0.29) were detected by TLC (double elution with CH₂Cl₂-MeOH, 20:1). ^fThe reagent was prepared using MeLi·LiBr. ⁹BF₃·OEt₂ (2.0 mmol) was added to **4** at -78°C.¹⁶

It is interesting to note that this enhanced selectivity was seen only when the cuprate was prepared from low-halide MeLi; use of MeLi-LiBr consistently resulted in essentially no selectivity regardless of the solvent (entries 6,7). Also, the addition of BF₃-OEt₂¹⁶ resulted in enhanced selectivity for opening at C-3 (2a:3a = 21:79, entry 8). These results may be rationalized by suggesting that opening of the epoxide at C-3 may be taking place through intermolecular attack on a complex such as I;¹⁷ this complex would be favoured with Lewis acids and disfavoured in strongly coordinating solvents. "Intramolecular" opening of the epoxide through a complex such as II would be expected to favour attack at C-2.

With the reagent Me₂CuLi (5), there was a similar but less pronounced solvent effect (entries 9-11); the ratios of 2a:3a varied from 44:56 (Et₂0) to 67:33 (THF-DMEU).

We have compared the opening of a number of other <u>trans-2,3-epoxy</u> alcohols using Me_2CuLi in Et₂O (classical conditions^{18, 19}) with opening using $Me_2CuCNLi_2$ in THF-TMEDA and THF-DMEU and have found the enhanced C-2 selectivity to be consistent (Table II). Thus epoxides **la-lc**, each possessing a methylene unit at C-4, are opened with **5** in Et₂O with essentially no regioselectivity. Much better yields of the 1,3-diol were obtained using **4** in THF-TMEDA or THF-DMEU. In THF-TMEDA opening at C-2 was favoured to the extent of \approx 74:26; in THF-DMEU the ratio of **2:3** was consistently 84:16. The cyclohexyl substituted epoxide **1d** showed a similar trend but with more bias towards C-2 as would be expected on the basis of steric arguments. The oxygen-substituted epoxide **1e** gave somewhat anomalous results in that very little differences in selectivity were observed for the three different conditions tried; nevertheless, all three conditions afforded reasonable selectivities for opening at C-2.

	R C A, B, or	$\xrightarrow{C^{a}} R \xrightarrow{OH}_{Me}$	'ОН +	$R \xrightarrow{Me}_{O}$	с он н
1		2 3 Ratio 2:3 ^{b,C}		,c	
Entry	Epoxy Alcohold	<u>R</u>	A	<u>B</u>	<u>C</u>
1	la	<u>n</u> -C ₁₀ H ₂₁	44:56	74:26	84:16
2	16	$Ph(CH_2)_3$	44:56	73:27	84:16
3	1c	<u>n</u> -C ₆ H ₁₃	42:58	69:31	84:16
4	1d	<u>c</u> -C ₆ H ₁₁	71:29 ^e	91:9 ^e	95:5 ^f
5	1e	$4-\operatorname{BrC}_6\operatorname{H}_4\operatorname{CH}_2\operatorname{OCH}_2$	89:11	83:17	91:9

Table II. Reaction of Epoxy Alcohols 1 with Me, CuCNLi, (4) and Me, CuLi (5).

^aConditions: A: **5** (4 equiv), Et₂0, -20°C/2 h+0°C/1 h; B: **4** (4 equiv), THF-TMEDA (4:1), -20°C/2 h+0°C/2 h; C: **4** (4 equiv), THF-DMEU (4:1), -20°C/2 h+0°C/18 h. ^bRatios were determined by ¹H NMR spectroscopy (250 MHz) on the peracetylated reaction mixture in $C_6 D_6$ (entries 1-3) or CDCl₃ (entries 4,5). ^CThe isolated yield of diols was 85-95% in each case. ^dEpoxy alcohols were prepared using catalytic [5-10 mol% Ti(0iPr)₄, 6-12 mol%(+)-DIPT] asymmetric epoxidation of the corresponding allylic alcohols.²⁰ ^eReaction was run at 0°C for 6 h. ^fAfter 18 h, reaction was only 70% complete.

While the results described herein are not a perfect solution to the problem of regioselectively introducing a methyl group into C-2 of simple 2,3-epoxy alcohols, they are a considerable improvement on the conditions which are currently available (which give at best a 1:1 mixture of isomers). Further work may provide better solutions.

Acknowledgments

We would like to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support and a postgraduate scholarship (to E.K.M.), and Varian Canada Inc. for an undergraduate scholarship (to D.R.C.).

References and Notes

- Katsuki, T.; Sharpiess,
 For recent reviews, see: Katsuki, T.; Sharpless, K.B. J. Am. Chem. Soc. 102, 5974 (1980).
- - (a) Sharpless, K.B.; Behrens, C.H.; Katsuki, T.; Lee, A.W.M.; Martin, V.S.; Takatani, M.; Viti, S.M.; Walker, F.J.; Woodward, S.S. <u>Pure and Appl. Chem.</u> 55, 589 (1983).
 (b) Behrens, C.H.; Sharpless, K.B. <u>Aldrichimica Acta</u> 16, 67 (1983).

 - (c) Pfenninger, A. Synthesis 89, (1986).
 (d) Rossiter, B.E. "Synthetic Aspects and Applications of Asymmetric Epoxidation" in Asymmetric Synthesis Vol. 5, ed. J.D. Morrison, Academic Press, 1985, pp. 194-246.
- Suzuki, T.; Saimoto, H.; Tomioka, H.; Oshima, K.; Nozaki, H. Tetrahedron Lett. **23,** 3597 3. (1982).
- Pfaltz. A.; Mattenberger, A. Angew. Chem. Int. Ed. Engl. 21, 71 (1982). 4.
- Roush, W.R.; Adam, M.A.; Peseckis, S.M. <u>Tetrahedron Lett</u>. **24**, 1377 (1983). (a) Johnson, M.R.; Nakata, T.; Kishi, Y. <u>Tetrahedron Lett</u>. 4343 (1979). 5.
- 6.
- (b) Nagaoka, H.; Kishi, Y. <u>Tetrahedron</u> 37, 3873 (1981).
- Wood, R.D.; Ganem, B. <u>Tetrahedron Lett.</u> 23, 707 (1982). Tius, M.A.; Fauq, A.H. J. Org. Chem. 48, 4131 (1983). 7.
- 8.
- The opening of "unbranched" cis 2,3-epoxy alcohols with Me CuLi has not been reported 9. to the best of our knowledge. We have found that reaction of i with Me CuLi (4 equiv, Et $_2$ 0,-20°C/2 h+0°C/1 h) gave a mixture of C-2 and C-3 opening products in a ratio of 84:16, respectively, while reaction with Me_CuCNLi_ (4 equiv, THF-TMEDA,-20°C/2 h \rightarrow 0°C/2 h) afforded a 65:35 mixture. The mechanistic implications of these results are not obvious at present.

- 10. Footnote 9 in Reference 6(a).
- Lai, C.K.; Gut, M. J. Org. Chem. 52, 685 (1987). 11.
- 12. Alternatively, the diols may be derivatized and separated chromatographically: Kuroda, C.; Theramongkol, P.; Engebrecht, J.R.; White, J.D. J. Org. Chem. 51, 956 (1986).
- 13. The effect of solvent on the reactivity and chemoselectivity of organocopper reagents has been documented:
 - (a) Posner, G.H. Org. Reactions 19, 1 (1972).
- (b) Lipshutz, B.H.; Wilhelm, R.S.; Kozlowski, J.A. <u>Tetrahedron</u> 40, 5005 (1984). Lipshutz, B.H.; Kozlowski, J.; Wilhelm, R.S. <u>J. Am. Chem. Soc.</u> 104, 2305 (1982). 14.
- 15. This decreased reactivity is in line with House's observation that HMPA [for which DMEU is a non-carcinogenic (at least for now!) substitute] retards the conjugate addition of organocuprates to enones: House, H.O.; Lee, T.V. J. Org. Chem. 43, 4369 (1978).
- 16. Lipshultz, B.H.; Parker, D.A.; Kozlowski, J.A.; Nguyen, S.L. <u>Tetrahedron</u> Lett. 25, 5959 (1984).
- 17. A similar complex has been postulated by Caron and Sharpless to explain the enhanced C-3 selectivity observed when 2,3-epoxy alcohols are opened by nucleophiles in the presence of the weak Lewis acid Ti(OiPr)4: Caron, M.; Sharpless, K.B. J. Org. Chem. 50, 1557 (1985). The changes in selectivity may also be due to changes in the nature (e.g. degree of oligomerization) of the cuprate reagent.
- Johnson, C.R.; Herr, R.W.; Wieland, D.M. J. Org. Chem. 38, 4263 (1973).
 Hartman, B.C.; Livinghouse, T.; Rickborn, B. J. Org. Chem. 38, 4346 (1973).
- 20. Hanson, R.M.; Sharpless, K.B. J. Org. Chem. 51, 1922 (1986).